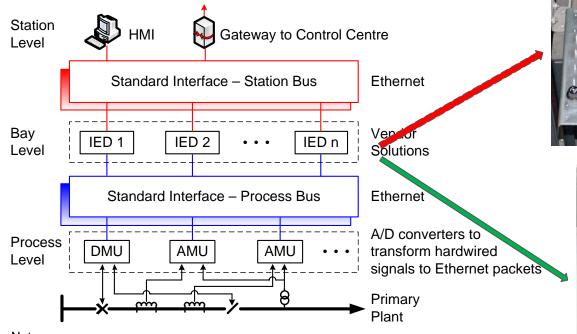
IEC 61850 Cyber Resilient Electrical Substation Technologies (CREST)

Linwei Chen 30th October 2019

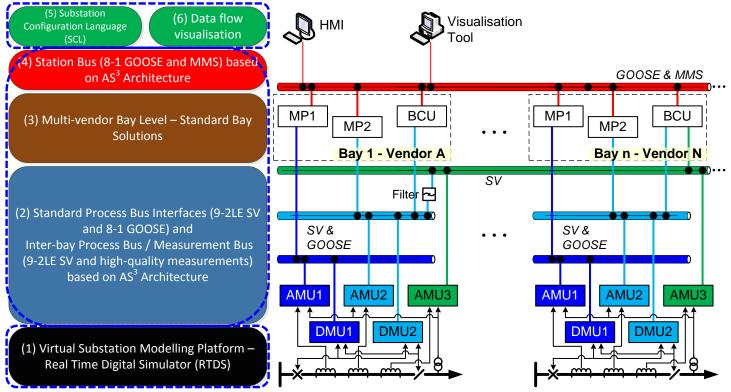

Outline

- Context
- Scope
- Progress
- Next Steps

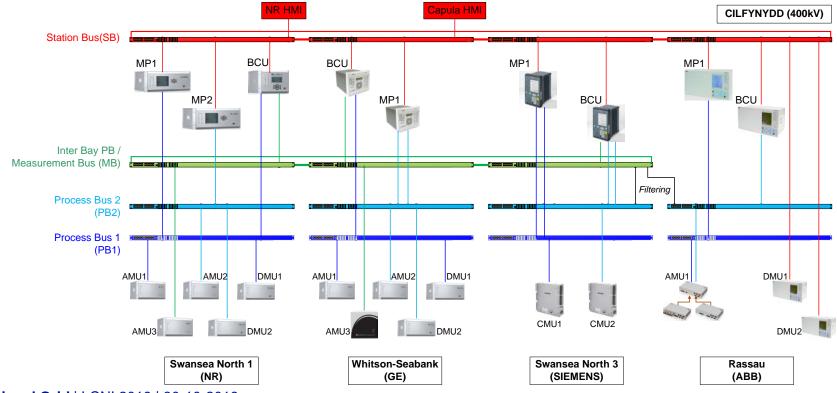
- P&C equipment for conventional substations:
 - Most solutions require hard wired interfaces at process and station level
 - Testing / commissioning requires long outages during installation, maintenance, replacement and extension
 - Equipment obsolescence / support cost

 To improve lifecycle value of P&C solutions, NGET has set up a research programme in 2008 to develop a new Architecture for Substation Secondary System (AS³) based on IEC 61850.

The AS³ Architecture



Notes:


- AMU: analogue merging unit that converts Amps / Volts to SV packets.
- DMU: digital merging unit, which converts P&C signals to GOOSE packets.

- As a proof of concept, NGET completed the VSATT (Virtual Site Acceptance Testing and ۲ Training) project in 2018.
- The project was supported by key suppliers and delivered the following: ۲
 - Development of a multi-vendor IEC 61850 test platform,
 - Development of a visualisation tool to monitor network traffic (GOOSE / SV),
 - Interoperability at process bus and station bus level has been assessed,
 - Engineering process and SCL configuration tools have been investigated.
- Findings and interoperability issues have been fed back to suppliers for following up.

The VSATT Platform – Overview

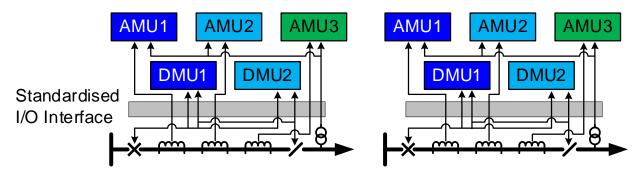
The VSATT Platform – Multi-vendor Solutions

• VSATT has enabled NG to proceed with the first Process Bus (PB) applications, i.e. PMU

 Further projects are in the pipeline – Busbar Protection (BBP), Delayed Automatic Reclosing (DAR) Blocking

• Follow up technical investigations with business case (RFI)

 During the VSATT project, it became clear that a number of issues merit further investigation, in particular the resilience and cyber security aspect to support wider roll out -> CREST project


- Review on the current state of the art and available technologies to secure IEC 61850 substation communications and all types of access
- Investigate available tools and technologies that help identify, prevent, detect, respond and recover from cyber related risks and incidents
- Configure and trial available products on the VSATT platform:
 - Intrusion detection systems (IDS),
 - Software defined networking switches,
 - Password management,
 - Secure devices access to operational equipment (checking/cleansing/signing),
 - Possibly global cyber security solution to manage secondary assets.

CREST Scope

- Study the resilience and cyber risk associated with IEC 61850 traffic:
 - SV (Sampled Values) vulnerability tests
 - GOOSE (Generic Object Oriented Substation Event) vulnerability tests
 - MMS (Manufacturing Message Specification) vulnerabilities
 - Failure modes and consequences
 - GPS dependence particularly for unit protection
- Develop a specification describing how cyber security standards (e.g. IEC 62351 and IEC 62443) are to be applied on the transmission system.
- Develop new ways of protecting S/S P&C equipment collaborative defence mechanisms, other new.

CREST Scope

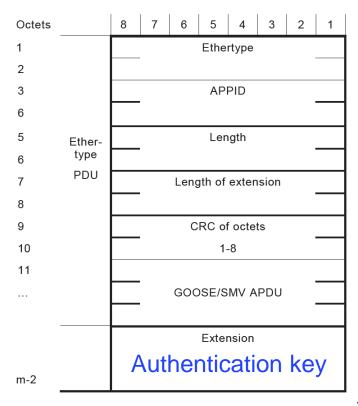
- Additional open challenges from VSATT
 - Standardised I/O interface to reduce outage time define and trial products/solutions,

- Investigate feasibility of mixed digital and conventional S/S designs:
 - Synchronising of CB closure,
 - Busbar protection.

Literature Review

- Publications and standards (IEC 62351 and IEC 62443) related to Operational Technology (OT) cyber security:
 - Identify compatible literature from similar areas,
 - Analyse previous cyber events,
 - List preliminary requirements for risk and vulnerability assessment;
 - Identify technologies/solutions that would help protect systems against cyber events;
 - Identify state of the art intrusion detection solutions;
 - Analyse respond and recovery methods to mitigate impacts.

Technology Review


- Study currently available technologies and solutions to identify gaps:
 - Intrusion detection systems,
 - Software Defined Networking (SDN) based on OpenFlow,
 - Access control, e.g. remote authentication via LDAP/RADIUS,
 - Cryptography for GOOSE based on IEC 62351.

Technology Review

- Software Defined Networking (SDN) based on OpenFlow:
 - OpenFlow is a open protocol to create SDN,
 - It enables the creation of allowed traffic table that should include all substation communications,
 - SDN can facilitate fast recovery from failures,
 - The configuration process might be simplified by importing IEC 61850 Substation Configuration Description (SCD) files,
 - The interoperability between different switches to be reviewed.

Technology Review

- Cryptography
 - IEC 62351 addresses a number of security issues related to IEC 61850,
 - Message signing It protects against alteration of data or the injection of malicious GOOSE,
 - Message encryption besides the benefits introduced by message signing, this adds confidentiality to the data transmitted,
 - The performance of IEC 61850 solutions with cryptography to be reviewed.

Stakeholder Engagement

- Early engagement meetings with solution providers to trial cyber security products:
 - Intrusion detection systems,
 - SDN switches and controller,
 - Password management based on LDAP/RADIUS,
 - Patch management system for IEDs within a multi-vendor environment,
 - GPS firewall for IEC 61850 differential protection testing.

Initial IDS Demonstration

- Two intrusion detection systems have been set up on the platform to monitor substation traffic:
 - Mirroring ports created on the Station Bus,
 - Both need to initiate a database:
 - Database A created by importing pre-scanned traffic packets, it has an option to use Machine-Learning to adapt to the traffic changes,
 - Database B created by importing IEC 61850 SCD files.

Initial IDS Demonstration

- Databases require on-line tuning.
- No false-positive alarms under substation events, e.g. power system faults and remote control.
- A few low-priority alarms were detected:
 - Duplicated GOOSE alarms,
 - VLAN tags missing,
 - GOOSE timestamp not aligned to UTC,
 - Public internet IP address space used.

Next Steps

- Continue IDS testing with:
 - Background traffic injection and packet modification/duplication,
 - Comms/device failures,
 - Maintenance activities, e.g. IED re-configuration and setting update,
- Set up SDN testing for Station Bus / Process Bus
- Develop a collaborative defence mechanism to secure IED responses to cyber events
- Dissemination:
 - IET DPSP 2020,
 - CIGRE Paris 2020.

nationalgrid